Write your name here		
Surname	Other nar	mes
Pearson Edexcel Level 1/Level 2 GCSE	Centre Number	Candidate Number
Computer		9
Paper 1: Principles of	of Computer Sci	ence
Sample Assessment Materi	·	Paper Reference
-	·	

Instructions

- Use **black** ink or ball-point pen.
- Use of a calculator is **prohibited**.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care on these questions with your spelling, punctuation and grammar, as well as the clarity of expression.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

	answer, put a line through the box $oxtimes$ and then mark your new answer with a	a cross⊠.
1	Computer scientists use numbers and mathematics in many areas, such as data representation, data transmission, and algorithms.	
	(a) (i) State the number of bits in a byte.	(1)
	(ii) Write an expression to calculate how many different numbers can be represented by an 8-bit binary number.	(1)
	(iii) State the number of bytes in these units.	(2)
	Kilobyte	
•••••	Megabyte	
	(iv) Write an expression to calculate the number of bytes in a gigabyte.	(1)
	Computers use sequences of binary digits to represent data.	
	(v) State one other item that computers use binary to represent.	(1)
•••••		

(b) Computer science uses different types of data representation. The ASCII code for the character "K" is 75 in denary.	
(i) State the ASCII code for "N" in denary.	(1)
The ASCII code for the question mark character "?" in hexadecimal is 3F.	
(ii) Convert the hexadecimal number 3F to 8-bit binary.	(2)
(iii) State why hexadecimal representations are used.	(1)
(c) Network data speeds are measured in Mbps or Gbps.	
(i) State the meaning of "bps".	(1)
One way of checking for errors during data transmission is by using a parity bi	t.
A 7-bit binary code is being transmitted with even parity. The original 7 bits are 1010100.	
(ii) State the correct parity bit.	(1)
(iii) Explain why you would prefer HTTPS to HTTP for transmitting data, such a banking details, over the Internet.	s (2)
Algorithms can keep data secure when transmitted over a network.	
(iv) State the name of this class of algorithm.	(1)

(d) Sequences of binary digits make up computer programs.

Complete the table to show which of these are **not** computer programs.

(4)

	Not Computer Programs
TCP/IP	\boxtimes
Caesar cipher	\boxtimes
Spreadsheet application	\boxtimes
Word processor	\boxtimes
Programming language	\boxtimes
Web browser	\boxtimes
Flowchart	\boxtimes
Phone app	\boxtimes

(Total for Question 1 = 19 marks)

						(2)
	Nara would like to know what differe			nedia are av	ailable.	
,	a) (i) State two advantages of connect	ting compi	uters using a	network.		(2)

Characteristic	Ring	Mesh	Star	Bus
A device, such as a switch, sits at the centre	\boxtimes	×	\boxtimes	\boxtimes
Nodes cooperate to take turns sending data	×		\boxtimes	×
Performance degrades quickly under heavy loads	\boxtimes	×	×	
May have a dedicated connection between each node and every other node	×	×	×	

 (i) State the purpose of a network protocol. MAC addresses contain groups of hexadecimal digits with separators. An example of a MAC address is 70-18-8B-51-6A-FB. (ii) Give two additional features of MAC addresses, not related to their format. IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format. 	State the purpose of a network protocol.	
of a MAC address is 70-18-8B-51-6A-FB. (ii) Give two additional features of MAC addresses, not related to their format. IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		(1)
of a MAC address is 70-18-8B-51-6A-FB. (ii) Give two additional features of MAC addresses, not related to their format. IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		
IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		e
IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		
IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		(2)
IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		
IP addresses also contain groups of digits with separators. An example of an IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		
IPv6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is 192.168.1.97. (iii) Give two additional features of IP addresses, not related to their format.		
	6 address is fe80::59a2:dc55:22b:12df%12. An example of an IPv4 address is	
	Give two additional features of IP addresses, not related to their format.	(2)
(c) One function of an operating system is file management.	e function of an operating system is file management.	
State one other function of operating systems.	te one other function of operating systems.	(1)
		(1)

(d) Hara and Nara decide to have a customised software application made for them. Compilers and interpreters translate source code to machine code.

Complete the table to show characteristics of interpreters and compilers.

(4)

	Interpreter	Compiler
Translates one source line at a time and executes it		⊠
The resulting executable file can be run without the need for additional software		\boxtimes
Translates the entire file of source at one time to create a module		\boxtimes
Needs a special environment in which to run the source code	×	×

(Total for Question 2 = 18 marks)

3	Αv	vate	erpa	rk u	ses electronic wristbands that allow access to each ride.	
	(a)	(a) The wristband operates a safety bar across the entrance to a slide. The bar rises allow each person through.				
		(i)			the general term used to describe mechanisms that translate one form gy to another.	(1)
			X	Δ	Switches	(1)
			×	В	Actuators	
			×	c	Registers	
			×		Buses	
		A r	nech	nani	sm automatically recognises when a person reaches the end of the slide.	
		(ii)			the general term used to describe mechanisms that either respond to on or measure a quantity in the physical world.	(1)
			×	A	Caches	
			×	В	Motors	
			×	C	Logic gates	
			X	D	Sensors	
	(b)	ad	dres Ide	s. ntify	ristband, visitors fill in a form with their name, address, and email y a piece of legislation that will affect how the waterpark stores	
			this	da ¹	ta.	(1)

The waterpark also stores information about the time it takes each visitor to complete a ride.

(ii) Complete the table to show each pass of a **selection sort** to arrange the numbers into ascending order.

(4)

	2.9	6.7	1.1	4.2
Pass 1				
Pass 2				
Pass 3				
Pass 4				

The waterpark keeps a relational database of the different rides in the park. Here are two tables from this database.

	tblRide							
Number	RideName	Thrill	Seats	Queue	Section			
1357	White Waters	10	30	90	596			
3642	Deadly Dive	25	10	30	596			
6381	Teapot Tilt	5	30	90	596			
6398	Alien Altitude	10	20	60	325			
6734	Relaxing River	5	200	600	249			
8642	Curvy Creek	15	20	60	874			
9174	Quiet Cove	5	200	600	655			
9612	Dark and Deep	15	20	60	655			
9753	Shark's Supper	25	30	90	249			

tblSection						
SectionID	SectionName	FirstAider				
249	London	False				
325	Paris	True				
596	Hamburg	True				
655	New York	False				
874	Venice	False				

A query executed against the two tables produces these results.

SectionName	RideName	Thrill	
Hamburg	Teapot Tilt	5	
Hamburg	Deadly Dive	25	
Hamburg	White Waters	10	
London	Relaxing River	5	
London	Shark's Supper	25	
New York	Dark and Deep	15	
New York	Quiet Cove	5	
Paris	Alien Altitude	10	
Venice	Curvy Creek	15	

(c) Write an SQL statement that would produce these results. The output should be sorted alphabetically by section name.	(3)

The waterpark has its own website.

Here is a page from the website, shown in a web browser.

Here is the HTML code for this web page.

```
⊟<head>
 5
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 6
     <title>Water World</title>
 7
     <link href="myCSS.css" rel="stylesheet" type="text/css" />
 8
    </head>
9
    □<body>
10
11
         <center>
12
             <h1>Water World</h1>
13
         </center>
14
15
         <div class="date">05 June 2015</div>
16
17
         <div class="links">Some Hyperlinks</div>
18
     </body>
    </html>
19
```

Here is the CSS file associated with the page.

```
1
2  @charset "utf-8";
3
4  hl {font-size:40px;color:green;}
5  .links {height:150px;width:100px;background-color:#0FF;}
6
```

The date must stay in the same position, even when the page is resized. This can be done with a new line of CSS code.

(d) Write the required CSS code.

(2)

Quantum computing is an emerging trend in computing technology	ogy.				
*(e) Discuss this statement:					
Quantum computing has the potential to solve problems beyond the scope of conventional computing.					
J	(6)				
(Total for	Question 3 = 18 marks)				
(lotal for	Question 3 – 10 marks)				

4	Byron is researching birds, their behaviours, and their songs.	
	(a) Byron uses a multi-agent-based computational model to simulate the behaviour of birds.	
	(i) Explain why multi-agent-based modelling is suitable for this scenario.	(2)
	Computer programs can also simulate other machines.	
	(ii) State the general term for a type of computational machine that is a software simulation of a real machine.	
		(1)

	He decides to store the life span of a bird as a real number with a decimal point.				
(i)	Explain how positive real numbers can be stored in floating point binary.	(4)			

(ii) Complete this sentence.	
(ii) Complete this sentence.	(1)
Bird songs are signals, which means they are continuous, with values that constantly change.	
(iii) Describe the process needed to convert the bird song to a format that can be stored on a computer.	
	(3)
Byron wants to save images of the birds for publishing on the web.	
(iv) Complete this sentence.	(-)
	(1)
JPEG is aimage compression algorithm, which results in a much-reduced file size but also the deletion of data.	
Non-physical goods, such as an idea, design, song, or a programming algorithm, are susceptible to being illegally redistributed once they are stored on a computer. They may be covered by copyright, patent, or trademark laws.	
(v) State the term for these non-physical goods, which are a result of original creative thought.	
2. 22 2 0 ag	(1)

concerns for its use.			(4)
	(Total for	Question 4 =	17 marks)
		Question 4 –	17 IIIai KS)
	(Total To		
	(Total Tot		
	(Total To		
	(Total Tot		
	(Total Tot		
	(Total Total		

5	Kitty K are ad	amp is an animal shelter for cats. It makes sure the cats are healthy before they opted.	
		a cat is brought into the shelter, the receptionist enters information into a sterised form. This information is saved in a database and can be sorted.	
	(a) Sta	te two additional reasons for saving information in a structured database.	(2)
1			
2			
		nen the information is entered, the computer program shows the receptionist nich building the cat should be sent to for an initial assessment.	
	•	If the receptionist enters an invalid gender, an error message is displayed and they must enter the gender again.	
	•	Female cats are sent to Building 32 and male cats are sent to Building 16.	
	(i)	State one input and one output for this process.	
			(2)
		Input	
		Output	

(ii) Draw a flowchart showing the logic described in part 5(b).	(5)

The form validates telephone numbers to make sure they are fit for processing. An example of correctly entered data is 01745920043.

All telephone numbers begin with a 0.

(c) State **two** different validation checks that could be used to validate the telephone numbers.

Provide **one** example of test data for each type of check to show the error is caught.

(4)

Type of Check	Test Data	

Cat health is checked during the assessment. Each individual aspect of health is rated on a scale of 1 to 5, with 1 being the healthiest and 5 being the least healthy.

An algorithm calculates an overall health score for each cat. The score is between 1.0 and 5.0, inclusive.

Weight contributes 50% to the score and teeth contribute 30% to the score. Eyes and ears contribute equally to the total score.

Here is a pseudocode version of the algorithm. Line numbers are not part of the pseudocode.

```
FUNCTION calcHealth (weight, teeth, eyes, ears)
   BEGIN FUNCTION
 6
7
8
9
       SET health TO 0
       SET Multiplier TO [50, 30, 30, 10]
10
11
       SET total TO 0
       SET ht TO 0
12
13
       SET he TO 0
       SET hr TO 0
14
15
       SET hw TO 0
16
17
       SET ht TO teeth * Multiplier[1]
18
        SET he TO eyes * Multiplier[2]
19
        SET hr TO ears * Multiplier[3]
20
        SET hw TO weight * Multiplier[0]
21
        SET total TO hw + ht + he + hr
22
23
        SET health TO total / 100.0
24
25
       RETURN health
26 END FUNCTION
```

Here is a call to the calcHealth function with its input parameters.

(d) Complete the trace table, using this call, to show an error in the algorithm.

(5)

weight	teeth	eyes	ears	ht	he	hr	hw	total	health

(Total for Question 5 = 18 marks)

TOTAL FOR PAPER = 90 MARKS