

Practice Paper

GCSE (9-1) Computer Science
J277/02 Computational thinking, algorithms and programming

MARK SCHEME

Duration: 1 hour 30 minutes

MAXIMUM MARK 80

Version:
Last updated: 16/6/20

(FOR OFFICE USE ONLY)

J277/02 Mark Scheme Practice paper

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS
1. Make sure that you have accessed and completed the relevant training packages for on–screen marking: scoris assessor Online

Training; OCR Essential Guide to Marking.

2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM
Cambridge Assessment Support Portal http://www.rm.com/support/ca

3. Log–in to scoris and mark the required number of practice responses (“scripts”) and the required number of standardisation

responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE
SCRIPTS.

 Assessment Objective
AO1 Demonstrate knowledge and understanding of the key concepts and principles of computer science.

AO1 1a Demonstrate knowledge of the key concepts and principles of computer science.
AO1 1b Demonstrate understanding of the key concepts and principles of computer science.

AO2 Apply knowledge and understanding of key concepts and principles of computer science.
AO2 1a Apply knowledge of key concepts and principles of computer science.
AO2 1b Apply understanding of key concepts and principles of computer science.

AO3 Analyse problems in computational terms:
• to make reasoned judgements
• to design, program, evaluate and refine solutions.

AO3 1 To make reasoned judgements (this strand is a single element).
AO3 2a Design solutions.
AO3 2b Program solutions.
AO3 2c Evaluate and refine solutions.

http://www.rm.com/support/ca

J277/02 Mark Scheme Practice paper

Annotations

Annotation Meaning

Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on

each page of an additional object where there is no candidate response.

Omission mark

Benefit of doubt

Subordinate clause/Consequential error

Cross

Expansion of a point

Follow through

Not answered question

Benefit of doubt not given

Point being made

Repeat

Slash

Tick

J277/02 Mark Scheme Practice paper

COMPONENT 2 SECTION B SYNTAX GUIDANCE

In Section B, certain questions require candidates to answer in either the OCR Exam Reference Language or the high-level programming
language they are familiar with. The information in this section provides generic guidelines in relation to the marking of these questions.

Where a response requires an answer in OCR Exam Reference Language or a high-level programming language, a candidate’s level of
precision will be assessed. These questions are designed to test both a candidate’s programming logic and understanding of core
programming structures.

Marks will be given for correctly using syntax to represent core programming constructs which are common across all programming
languages. The construct must be present in a recognisable format in a candidate’s answer.

Where the response requires a candidate to respond using the OCR Exam Reference Language or a high-level programming language,
answers written in pseudocode, natural English or bullet points must not be awarded marks.

The guidance below covers the elements of each core construct. As guidance, several examples are provided for each. These examples are
not exclusive but do present a variety of acceptable ways taken from a range of different languages.

J277/02 Mark Scheme Practice paper

Concept Examiner Guidance
Commenting
// //This function squares a number

function squared(number)
 squared = number^2
 return squared
endfunction
//End of function

• Other examples allowable, e.g.:
o # this is a comment
o /* this is another comment */

Variables
=
const
global

x = 3
name = "Louise"
const vat = 0.2
global userID = "Cust001"

• Variables and constants are assigned using the = operator
• Constants are assigned using the const keyword (or similar)
• Identifiers should not have clear spaces within them or start with

numbers
• String values must use quotation marks (or equivalent)
• Assignment must use =, :=,  (or a suitable alternative)
• variable identifier must be on the left when using OCR Exam Reference

Language and the value to be assigned on the right
• Some languages allow the value on the left- and the identifier on the

right-hand side
• Variables and constants are declared the first time a value is assigned.

They assume the data type of the value they are given
• Variables and constants that are declared inside a function or procedure

are local to that subroutine
• Variables in the main program can be made global with the keyword

global
• For input, a suitable command word for input and a variable identifier to

assign data to (if required)
e.g.
INPUT identifier
identifier = INPUT

J277/02 Mark Scheme Practice paper
Input/Output
input(…)

print(…)

myName = input("Please enter a
name")

print("My name is Noni")
print(myArray[2,3])

• For output, a command word for output (e.g. output, print, cout)
• Data to be output. If this is a string then quotation marks (or equivalent)

are required
• If multiple items are to output, a suitable symbol for concatenation such

as +, &.

Casting
str()

int()

real()
bool()

str(345)

int("3")

real("4.52")
bool("True")

• Variables can be typecast using the int str and float functions

Iteration
for … to …

next …

for … to … step …

next …

for i=0 to 9
 print("Loop")
next i

for i=2 to 10 step 2
 print(i)
next i

for i=10 to 0 step -1
 print(i)
next i

• for keyword
• …with counter variable
• Identification of number of times to iterate
• Clear identification of which section of code will be repeated (e.g. using

indentation, next keyword or equivalent, {braces})

while …

endwhile

while answer != "Correct"
 answer = input("New answer")
endwhile

• While / do..until key words or equivalent
• …with logical comparison
• clear identification of which section of code will be repeated (e.g. using

indentation, endwhile/until keyword or equivalent, braces)

do

until …

do
 answer = input("New answer")
until answer == "Correct"

J277/02 Mark Scheme Practice paper
Selection
if … then
elseif … then

else

endif

if answer == "Yes" then
 print("Correct")
elseif answer == "No" then
 print("Wrong")
else
 print("Error")
endif

• if key word followed by logical comparison
• key word for elseif or equivalent followed by logical comparison
• key word for else or equivalent with no comparison
• clear identification of which section of code will be executed depending

upon decision

switch … :
 case … :
 case … :
 default:
endswitch

switch day :
 case "Sat":
 print("Saturday")
 case "Sun":
 print("Sunday")
 default:
 print("Weekday")
endswitch

• May be referred to differently in some languages. The format to the left
will be used in all questions

• switch/select key word or equivalent followed by variable/ value
being checked

• key word for each case followed by variable/ value to compare to
• key word for default case (last option)
• clear identification of which section of code will be executed depending

upon decision

J277/02 Mark Scheme Practice paper
String handling/operations
.length subject = "ComputerScience"

subject.length gives the value 15

• Suitable key word to indicate length and string identifier
e.g. len(string)

.substring(x , i)

.left(i)

.right(i)

subject.substring(3,5) returns "puter"
subject.left(4) returns "Comp"
subject.right(3) returns "nce"

• Suitable string and characters required identified
• Use of key words such as left, right, mid, etc,

are all acceptable as long as these are precise
• Treating a string as an array of characters is acceptable

+ (concatenation) print(stringA + string)

print("Hello, your name is : " + name)
• Alternate symbol used indicate two strings or values are

being concatenated is acceptable e.g. stringA &
stringB or stringA.stringB

• Use of comma e.g. print(stringA, stringB)is
acceptable to output multiple values but examiners
should be aware that this is not concatenation.

.upper

.lower

ASC(…)
CHR(…)

subject.upper gives "COMPUTERSCIENCE"
subject.lower gives "computerscience"

ASC(A) returns 65 (numerical)
CHR(97) returns ‘a’ (char)

• Suitable key word to indicate string to be converted and
whether this is to be converted to upper or lower case
e.g. lower(stringname)

• Suitable keyword to indicate conversion and whether this
is to or from ASCII. Where converting from ASCII, an
integer value must be given and where converting to
ASCII, a single character must be given.

J277/02 Mark Scheme Practice paper
File handling
open(…) myFile = open("sample.txt") • open keyword (or equivalent)

• read or write clearly identified
• write or read keyword (or equivalent)
• close file keyword (or equivalent)
• newFile keyword (or equivalent)

.close() myFile.close()

.readLine() myFile.readLine()returns the next line in the file

.writeLine(…) myFile.writeLine("Add new line")

.endOfFile() while NOT myFile.endOfFile()
 print(myFile.readLine())
endwhile

newFile() newFile("myText.txt")

Arrays
array colours[…]

array gameboard[…,…]

array colours[5]

array colours = ["Blue", "Pink", "Green",
"Yellow", "Red"]

array gameboard[8,8]

• Array identifier
• Index number to be accessed in square brackets, rounded

brackets or curly braces (all acceptable)

• Array identifier assigned to initial values in one step

• For 2D arrays, the two indices should be given in one bracket

separated by a comma or in two separate brackets, e.g.
gameboard[4,6]
gameboard[4][6]

Where 2D arrays are represented by tables in a question,
candidates are expected to use the same row/column or
column/row format as given in the question. This will always
be given.

names[…] = …
gameboard[…,…] = …

names[3] = "Noni"
gameboard[1,0] = "Pawn"

J277/02 Mark Scheme Practice paper
Sub programs
procedure name (…)

endprocedure

procedure agePass()
 print("You are old enough to ride")
endprocedure

procedure printName(name)
 print(name)
endprocedure

procedure multiply (num1, num2)
 print(num1 * num2)
endprocedure

• function or procedure key word (or equivalent)
• … followed by identifier
• Any parameters passed in are contained within brackets and

come after identifier name
• Clear identification of which section of code is contained

within the subroutine (e.g. indentation, endsub key word,
braces)

• functions only: a suitable method of returning a value (e.g.

return keyword or assignment of value to function
identifier)

e.g.
def newfunction(x,y)
 total = x + y
 newfunction = total

procedure(parameters) agePass()

printName(parameter)

multiply(parameter1, parameter2)

function name (…)
 …
 return …
endfunction

function squared(number)
 squared = number^2
 return squared
endfunction

function(parameters) print(squared(4))

newValue = squared(4)

J277/02 Mark Scheme Practice paper
Random numbers
random(…,…) myVariable = random(1,6)

myVariable = random(-1.0,10.0)

• random key word (or equivalent)
• identification of either smallest and largest number to be

chosen or just largest number

e.g.
randnumber(10)
rand(1,6)

Comparison operators • = or == are both acceptable for equal to.
• <> is acceptable for not equal to.
• Care must be taken by candidates to ensure that > and < are not mixed up.
• Candidates must understand that < and > are non-inclusive, so that <9 does not include

9. This is different than <=9 which is inclusive and therefore does include 9.
• Alternative symbols for arithmetic operators are acceptable where these appear in other

high-level languages (such as % for MOD or ** for exponentiation).

• 6 x 5 is not an acceptable alternative for multiplication.
• Alterative logical operators are acceptable where these appear in other high-level

languages (such as && for AND).
• Alternative Arithmetic Operators may be used as well (such as % for modulus).
• Candidates must be aware that logical operators must be used correctly:

if x > 0 AND x < 10 is logically correct.
if x > 0 AND < 10 is not logically correct.

== Equal to <= Less than or equal to
!= Not equal to > Greater than
< Less than >= Greater than or equal to
Boolean operators
AND Logical AND
OR Logical OR
NOT Logical NOT
Arithmetic operators
+ Addition
- Subtraction
* Multiplication
^ Exponent
/ Division
MOD Modulus
DIV Quotient

J277/02 Mark Scheme Practice paper
Section A

Question Answer Mark Guidance
1 a i One mark per row

Statement High-level

language
Low-level
language

Uses English-like
keywords such as
print and while.


Must be translated

before the processor
can execute code.


Code written is

portable between
different processors


Requires the

programmer to
understand the

processor's registers
and structure

 

4 Accept other markings that indicate a choice has been
made (e.g. a cross, etc)

 b 1 mark per bullet, max 4

e.g.
• Editor
• …to enable program code to be entered / edited

• Error diagnostics / debugger
• …to display information about errors / location of

errors / suggest solutions

• Run-time environment
• …to enable program to be run / to check for run-

time errors / test the program

4 Allow other tools available in an IDE with suitable
expansion (e.g. breakpoints, watch window, stepping,
pretty printing, etc)

J277/02 Mark Scheme Practice paper
Question Answer Mark Guidance

2 a 1 mark per bullet, max 4

• C
• A
• D/F
• F/D

4 D, F may be swapped around.

e.g.

 b i • An error that does not cause the program to
crash // produces unexpected output

1

 ii 1 mark per bullet, max 4

• Line 02 // empty = 0
• Will reset empty to 0 on each iteration of the loop

• Line 07 // print (“empty”)
• Will print out the string “empty” instead of the

value held in the variable

4 Mark in pairs

 c i 1 mark per bullet, max 4

• Compare 5 (middle value) to 7
• 5 is smaller than 7 / 7 is larger than 7 so…
• discard lower part of list / repeat with upper part

of list
• …compare 7 to 7 (item found)

4 Do not accept generic answers that do not refer to
the data given.

J277/02 Mark Scheme Practice paper
 ii 1 mark per bullet, max 2

• List of size 1 to compare
• …and item not matched to search term

2 Do not accept answers relating to "end of list" – this is
linear search.

 iii • More efficient // Less time taken (to find item) //
fewer comparisons to make (with large lists)

1 Accept reference to big O notation as equivalent to more
efficient.

Question Answer Mark Guidance
3 a • OR gate with two inputs // AND gate with two

inputs
• Diagram as shown in guidance with no additional

gates

2

 b • Logically compares A AND // correct nested IF

• …B OR C // correct sequential IF
• Output in both cases (with attempt at selection).

3 A = input("Is the customer 15 or over?")
B = input("Does the customer have a ticket?")
C = input("Does the customer money to buy a ticket")
if A AND (B OR C) then
 print ("allowed")
else
 print ("not allowed")
endif

Accept answers where inputs are given as strings e.g :

if A == “Yes” AND (B == “Yes” OR C == “Yes”) then
 print ("allowed")
else
 print ("not allowed")
endif

 c • freeseats called with "Red"
• …returned value assigned to variable redseats

2 redseats = freeseats("Red")

J277/02 Mark Scheme Practice paper
“Red” must use suitable string delimiters (e.g. speech marks) if
directly passing the string. Do not penalise case.

J277/02 Mark Scheme Practice paper

Question Answer Mark Guidance
4 a i • Hiding / ignoring / removing detail // focussing on

certain parts of a problem

1

 ii • Focus on age / number of miles
• Ignore other factors (such as make, model, etc)

1 Allow other examples of factors to ignore / remove for
BP2

 iii • Ensures only certain users can access the
system

• Using password / other example of authentication
technique

2 Allow other examples of authentication for BP2

 b i 1 mark per bullet, max 4

• Miles and age input separately
• Checks for valid mileage
• Checks for valid age
• Checks both are greater than / greater than equal

to zero
• …correctly outputs both True and False

5 BP2 and 3 must check for both ends of range – must
check that input data is not negative.

Allow FT for BP4 if already penalised under BP2 and/or 3
and output is otherwise correct.

e.g.

miles = input("enter miles driven")
age = input("enter age of car")
valid = True
if miles > 10000 or miles < 0 then
 valid = False
elseif age > 5 or age < 0 then
 valid = False
endif
print(valid)

 ii 1 mark per row, max 3
• Normal : miles (0 – 9,999), age (0 - 5)
• Erroneous/Invalid: miles (less than 0, larger than

9,999), age (less than 0 / more than 5) // non-
numeric data

• Boundary : miles (-1/0 / 9,999 / 10,000), age (-1/0
/ 5/6)

3 Specific data must be given, not a description
e.g.

 Miles Age
Normal 7,000 3

Erroneous 12,000 7
Boundary 10,000 5

J277/02 Mark Scheme Practice paper
 iii • During development // whilst writing the program

// before development is complete.

1

 c 1 mark per bullet, max 6

• Inputs the current battery charge percentage
• Outputs “full” if 100%
• Calculates the amount to charge
• Calculates the time in minutes…
• …converts to hours and minutes
• Outputs the time in hours and minutes

6 Allow output of 0 hours 0 minutes if full.
Allow answers referencing decimal parts (e.g. 0.8 = 80%)
BP5 can be attempted in many ways (e.g. DIV and MOD,
repeated division, etc)
Allow FT for BP6 if reasonable attempt at conversion for
BP5 has been given.

e.g.
charge = input("enter battery charge")
if charge == 100 then
 print(“full”)
else
 time = (100-charge) * 10
 hours = time DIV 60
 mins = time MOD 60
 print (hours, mins)
endif

J277/02 Mark Scheme Practice paper
Section B

Question Answer Mark Guidance
5 a One mark per correct choice

• SELECT ItemCode, ItemName
• FROM tblStock
• WHERE Price >=60

3 Accept other markings that indicate a choice has been
made (e.g. a cross, etc)

 b i One mark if two correct, two marks if four correct,
three marks if all correct.

Price input Test type Expected price
output

50 Normal 50
100 Boundary 100
150 Normal 130
200 Boundary 180
250 Normal 210

3

 ii One mark per bullet point

• Input and store price
• Check if price is > 200…
• …if true, reduce price by 40
• Check if price is >100 and not >200…
• ...if true, reduce price by 20
• Output price

6 High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural language.

BP3 and BP5 only to be given if sensible check for price
being over the appropriate threshold. BP4 must check
that price is both larger than 100 and not larger than
200; do not give mark for simply checking price is larger
than 100. This may be implicit (e.g. using elseif).

e.g.
price = input("enter price")
if price > 200 then
 price = price – 40
elseif price > 100 then
 price = price - 20
endif
print(price)

J277/02 Mark Scheme Practice paper
 c One mark per bullet point

• checking both values (e.g. or changed to and if

appropriate)
• if statement in correct format (e.g. checking

against stocklevel for each condition)
• if statement uses correct comparisons (e.g. >=

and <=)
• print statements in correct position
• print statements include string delimiters (e.g.

speech marks) around both string outputs

5 High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural language.

e.g.

stocklevel = input("Enter stock level")
if stocklevel >= 5 and stocklevel <= 25 then
 print("In demand")
else
 print("Not in demand")
endif

alternative example

stocklevel = input("Enter stock level")
if stocklevel < 5 or stocklevel > 25 then
 print("Not in demand")
else
 print("In demand")
endif

As a matter of principle, a candidate who refines the
program to work fully but in a different format to that
specified should gain full marks.

 d i One mark per bullet point, in the correct place

• size // len(discountcodes-1)
• code
• price // newprice
• [x,1] // [x][1]
• return newprice // checkdiscount = newprice

5 e.g.

function checkdiscount(price, code)
 newprice = price
 size = len(discount)-1
 for x = 0 to size
 if discount[x,0] == code then
 newprice = price – discount[x,1]
 endif
 next
 return newprice
endfunction

J277/02 Mark Scheme Practice paper
 d ii One mark per bullet point, maximum 2 marks

• newprice
• size
• x

2 Do not penalise capitalisation

Accept price, code, discount

 d iii • asks for price and discount code to be input
• …passes both to the checkdiscount() function as

parameters…
• ...stores / uses returned value
• calculates total of all prices entered/returned
• repeats until 0 is entered as price
• outputs calculated total

6 High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural language.

BP3 allow total of prices entered as FT if candidate
does not achieve BP2

e.g.

total = 0
do
 price = input("Enter a price")
 code = input("Enter a discount code")
 newprice = checkdiscount(price, code)
 total = total + newprice
until price == 0
print(total)

alternative example

total = 0
price = 1
while price != 0
 price = input("Enter a price")
 code = input("Enter a discount code")
 total = total + checkdiscount(price, code)
endwhile
print(total)

J277/02 Mark Scheme Practice paper

	marking INSTRUCTIONS

